
A Fine Grained Access Control Model for
Relational Databases

Neha Sehta*, Dr. Suresh Jain#
*Sr Lecturer, Department Of Information Technology

S.D. Bansal College Of Technology, Indore, India
#Director, KCB Technical Academy, Indore, India

Abstract- Nowadays most of the commercial work make use of
relational database management systems (RDBMS) to store a
substantial amount of their data. Accessing information over
the Internet has become an essential requirement.
Authorization mechanisms in SQL permit access control at
the level of complete tables or columns, or on views,
providing coarse granularity. There is no direct way to
control which tuples can be accessed by which users. Fine
Grained Access Control (FGAC) is one of the ways to ensure
data security. As per the requirements the granularity of fine
grained access control can be on directories or folder level,
database level, table level, even on individual record (tuple)
and data field level. Access control is the process of mediating
every request to resources and data maintained by a system
and determining whether the request should be granted or
denied. The access control decision is enforced by a
mechanism implementing regulations established by a
security policy. Corresponding to different criteria for
defining what should, and what should not be allowed,
different access control policies can be defined. In this paper,
a novel access control model is proposed, which provides fine
grained access control to shared data to authorized users. In
proposed implementation, we have created a set of meta-
tables, to store the data that make up the security policies,
registered users and their authorization information. This
allows policies to be created (or changed) dynamically. The
access permissions are stored in the form of quadruple <role,
object, operation, policy>. Any change in policies doesn’t
affect the application program. Moreover multiple policies
defined to regulate user access together are also supported,
which facilitates smooth access to user having multiple
credentials without having him to mention each of his
credentials at the time he makes request.

Keywords- Access Control Policy, Data Security, Fine Grained
Access Control, RDBMS.

I. INTRODUCTION
Information is the most valuable asset for organizations.
In our days information is stored in databases that become
accessible from the Internet [17]. The information
disclosure from such databases may have very serious
impact on organization business. So new access control
approaches for databases and especially for web databases
have become a dire necessity. Thus appropriate access
control methodology is to be used to provide access only
to authorized person.
Access control is an integral part of databases and
information systems [1]. Granularity of access control
refers to the size of individual data items which can be

authorized to users. There are many scenarios where we
need some sort of FGAC:
 In an academic scenario, institution's database stores
information about students, it may be desired to allow
students to see only those tuples which store their own
marks and/or fees details. On the other hand, a professor
should be able to access all grades for a course she has
taught.
 In banks, it is required that the customer should be
able to query the balance only in his own account, and not
others. Similarly a teller should enjoy read privileges to
balances of accounts of customers but not other details.
 A company providing web services, may have
assignments to carry out the HR and Payroll business of
other companies.
 Electronic Health Records (EHR) containing
confidential and sensitive information about the patients
should permit the access to authorized users only.
 And many more…
Thus it is quite evident that security policies should be
applied on data rather than through what means it is
accessed. In this work we have proposed the access
control system for an academic institute which provides
access to information requested, if requestor abides by
security policies.
The rest of this paper is organized as follows. Section 2
elaborates motivation behind the work, i.e. the problems
which we generally face while working with web
application which is using important and valuable data
resources. Section 3 presents the related work in this area.
Section 4 explains the proposed access control policy
architecture and methodology. Section 5 concludes and
describes some future work.

II. MOTIVATION
Current day database applications, with large numbers of
users, sharing invaluable resources, require fine-grained
access control mechanisms, at the level of individual tuple
and column, not the entire relations/views. To control
which parts of the data can be accessed by each user, fine-
grained access control is often enforced in the application
code, which has numerous drawbacks; these can be
avoided by specifying/enforcing access control at the
database level.
Currently, authorization mechanisms (using GRANT/
REVOKE) in SQL permit access control at the level of

Neha Sehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3183 - 3186

3183

complete tables or columns, or on views. It is based on
the System R authorization model; ownership
administration with administration delegation.

GRANT privileges ON object TO users [WITH
GRANT OPTIONS]

privileges = SELECT | INSERT | DELETE | . . .
object = table | attribute

REVOKE privileges ON object FROM users
[CASCADE]
There is no direct way to specify fine-grained
authorization to control which tuples can be accessed by
which users. In theory, fine-grained access control at the
level of individual tuples can be achieved by creating an
access control list for each tuple. However this approach
is not scalable, and would be totally impractical in
systems with millions of tuples, and thousands or millions
of users, since it would require millions of access control
specifications to be provided (manually) by the
administrator. As an alternative access control
specifications based on user roles can be used.
For a web application, end users don't have database user
ids; they are all mapped to the same database user id. The
users of web applications can be casual users and their
number is not limited. The browser does not directly
connect to the database, but instead transfer a request to a
web server. The server processes the request and if
required it performs a transaction to the database

III. RELATED WORK
The known methods for providing protection in databases
is to create users in database, assigning them unique
user_id, password. Using such identity, the authorization
provided by Grant / Revoke mechanism.
Fine-grained access control was first introduced as a part
of the access control system in INGRES by Stonebraker
and Wong (1974), which was implemented by query
modification technology [2]. The basic idea of query
modification is that before being processed, user queries
are transparently modified to ensure that users can access
only what they are authorized to access (Bertino et al.,
2005; Wang et al., 2007). Views are used to specify and
store access permission for users[4]. When a user submits
a query, DBMS first finds all views whose attributes
include the attributes of the issued query, and then add
the predicates of these views to the predicates of the
original query to form a new modified query, which will
be carried out.

Oracle virtual private database (VPD) [15] also uses query
modification to implement FGAC (Oracle Corporation,
2005). VPD supports FGAC through functions written as
stored procedures which are associated with a relation.
When a user accesses the relation, the function is triggered
to return predicates, and the database rewrites the SQL
statement submitted by the user to include these

predicates. For providing enhanced access control, in
addition to row level access control, column-level VPD
has been added to Oracle to provide column-level access
control, which in turn associates functions with columns.
Chaudhuri et al. (2007) also extended SQL language to
support fine-grained authorization by predicated grants[3].
Not only the column- and cell-level authorizations, but
also the authorizations for function/procedure execution
were supported. Moreover, they designed query defined
user groups and authorization groups to simplify the
administration of authorizations.
Hippocratic databases [14] are another available solution
to controlling database access. These databases were
designed in order to take responsibility for the privacy of
the data they contain (Agrawal, Kiernan, Srikant, and Xu,
2002) and are applicable to data-sensitive fields such as
healthcare (Agrawal, Kini, LeFevre, Wang, Xu, and Zhou,
2004) and finance (Agrawal, Asonov, Bayardo,
Grandison, and Johnson, 2005). IBM’s Hippocratic
Database (HDB) is one implementation that provides
database security by enforcing security policies, auditing
usage, and allowing data to be shared amongst databases
(Agrawal et al., 2005).

IV. PROPOSED WORK
We put forward a framework for enforcing Role Based
Access Control[7,8,9] at the database level rather than the
application level using dynamic query rewriting. The
proposed framework takes a user submitted SQL
statement and dynamically rewrites it according to
security policies defined. The query rewriter adds rules in
the form of WHERE clauses to create a new SQL
statement, that is then submitted to the RDBMS. This
framework is DBMS vendor independent and allows for
attribute-level granularity, where an attribute is the
intersection of a row and column.
To implement proposed framework, we have created a set
of meta-tables in which to store the data that make up the
security policies, registered users and their authorization
information. This allows for joins, necessary for policies
to be created dynamically. The access permissions are
stored in the form of quadruple <role, object, operation,
policy> associated with a table join id as shown in table I
given below.

TABLE I
ACCESS PERMISSION TABLE

A. System Overview
The proposed system mainly comprises of four modules:
1) Authentication and Authorization Module: This
module basically authenticates user and extracts user
authorization information. User authorization information
contains various roles user possesses and the attributes
and their values specific to particular role.

Role Object Operation Policy_id Join_id
Student Fees_detail Select P1 J1

Neha Sehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3183 - 3186

3184

2) Query Interface: This module presents GUI to build
query by selecting data source and applying filters.
3) Policy Engine: This module takes user authorization
information and query build by user as input and based on
policies stored in policy store generates partial WHERE
clause of query to be submitted to the data source. Policy
is mapping between data item and corresponding
credentials required for those items. Our system works
only on closed policy [5]. A closed policy permits
specification of only positive authorizations and allows
only those accesses that are explicitly authorized. In
contrast, an open policy permits specification of only
negative authorizations and allows only those accesses
that are not explicitly denied.
4) Query Modifier And Generator: This module
combines predicate generated by policy engine to the filter
conditions given by user. Thus query given by user is
appended with modified WHERE clause.

USER

Query
Interface

Authentication
&

Authorization
Module

User
Info

Policy
EnginePolicy

Store

Query
Modifier

And
Generator

Database

ResultSet
Fig 1 System Overview

B. Database Design
1) Database to store user authentication information:-
User id and password is used to authenticate user.
2) Database to store user authorization information:
Figure 2 shows the ER diagram to show how user
authorization information is stored.

Fig 2 ER diagram for User- Role – Attribute

3) Database to store Access Control Policies: Access
Control Policies defines high-level rules according to
which access control must be regulated. Policies define
what a user group can access and the filtering condition
applied to requested database. A fact that every Boolean
condition can be reduced to Conjunctive Normal Form
(CNF) is used here for representing the boolean condition
[6]. CNF is defined as ANDing of various disjunctions
where disjunction is an ORing of variables. A general
CNF can be represented as

(A or B) AND (C) AND (D or E or F) AND ……
A policy is defined as ANDing of boolean conditions and
that boolean condition can further be defined as ORing of
boolean conditions which is stored in database with the
help of three tables as shown below.
 TABLE II TABLE III

POLICY TABLE CONDITION TABLE
Policy_id Condit_id Condit_id Description id

P1 C1 C1 D1

P1 C2 C1 D2

P1 C3 C2 D3

P2 C1 C2 D4

P2 C4 C3 D5

P3 C1 C4 D6

TABLE IV

 CONDITION DESCRIPTION TABLE
desc_id Opd1 ROp Opd2

D1 Fees_detail.enrollment_no = Enrollment_no

From the table II above:
Policy P1 → C1 Λ C2 Λ C3
Policy P2 → C1 Λ C4
Policy P3 → C1

After replacing C1, C2, C3, C4 using table III
Policy P1 → (D1 V D2) Λ (D3 V D4) Λ D5
Policy P2 → (D1 V D2) Λ (D6)
Policy P3 → (D1)

Each description of boolean condition can be defined as
shown in table IV.
Example 1:
Policy 1: - A Student can access only his fees detail
C1. User should be a valid student
C2. Can only see tuples which have his enrollment no as

attribute
C3. Can request only in working hours i.e. on or after

10:00AM
C4. Can request only in working hours i.e. on or before

5:00PM
Based on access defined on role, data source and
privilege, policy is extracted as P1 (from table I). Here
Policy 1 is defined as (from database defining policies)
P1 → C1 Λ C2 Λ C3 Λ C4.

Neha Sehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3183 - 3186

3185

Further these conditions are described as D1, D2, D3, and
D4. Based on the roles the user possesses and attributes
associated above conditions could be framed as in the
format shown in table IV

Desc_id Opd1 ROp Opd2

D1 year(sysdate()-6) <=
year_of_

addmission

D2 fees_detail.enrollment_no = enrollment_no

D3 hour(now()) >= 10

D4 hour(now()) <= 17

Now when a student access fees_detail by the query

SELECT * FROM fees_detail
Based on access permissions defined on role
Student(Table I), data source query is modified as

SELECT * FROM student natural join fees_detail
WHERE ((((fees_detail.enrollment_no='IT071028'))
and ((year(sysdate())-6<='2007')) and ((hour(now()) >=
10)) and ((hour(now()) <= 17)))

This modified query is fired to database and result set
obtained is according to the authorizations defined.

V. CONCLUSION

The major contributions are summarized as follows:
1. We can represent access control condition in

Conjunctive Normal Form. Policy could be
breakdown to atomic level (variable) to store in
database.

2. We implement the FGAC model in relational
database as a part of DBMS. Any change in policies
doesn’t affect the application.

3. Policies can be designed for any underlying database.
4. If the requestor possesses multiple credentials,

multiple policies could be combined and information
is provided for which he is authorized. Moreover
filters could be applied as per the requirements.

The system developed is capable of defining access
control rules using user roles, attributes specific to roles
and their values and providing fine grained access control
which current SQL authorization does not. Currently the
system allows a user to only view the information i.e. the
user can perform only the SELECT operation but in future
the system can be expanded to provide the functionality of
insertion, updation and deletion. The user can be allowed
to perform filtering operation on the information
accessible to him.
The system developed only supports positive
authorizations; Positive authorizations state those accesses
that are to be allowed. FGAC using Query Modification
approach definitely creates complex queries, which surely
degrades the performance. Performance evaluation and
analysis can also be done on large database in future.

REFERENCES
[1] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy.
Extending query rewriting techniques for fine-grained access control. In
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. ACM Press, 2004.
[2] Stonebraker, M., Wong, E., 1974. Access Control in a relational
Database Management System by Query Modification. Proc. ACM
Annual Conf., p.180-186. [doi:10. 1145/800182.810400]
[3] Surajit Chaudhuri, Tanmoy Dutta, and S. Sudarshan, “Fine Grained
Authorization Through Predicated Grants
[4] Motro. An access authorization model for relational databases
based on algebraic manipulation of view definitions. In ICDE, 1989.
[5] E. Bertino, S. Jajodia, and P. Samarati, "A Flexible Authorization
Mechanism for Relational Data Management Systems," in ACM
Transactions on Information Systems, April, 1999
[6] Nirmal Dagdee, Ruchi Vijaywargiya: “Role based hybrid access
control Methodology for shared Electronic Health Records”.
[7] Ravi S. Sandhu, Edward J. Coynek, Hal L. Feinsteink and Charles
E. Youmank: “Role-Based Access Control Models”, IEEE Computer,
Volume 29, Number 2, pages 38-47 , 1996
[8] Sabrina De Capitanidi Vimercati, Pierangela Samarati : New
Directions in Access control, www.spdp.dti.unimi.it/papers/nato.pdf,
2002
[9] Pierangela Samarati1 and Sabrina De Capitani di Vimercati,
“Access Control: Policies, Models, and Mechanisms”.
[10] Wei Zhou and Christoph Meinel, “Implement role based access
control with attribute certificates”
[11] Jie SHI, Hong ZHU, “A fine-grained access control model for
relational databases”
[12] Bertino, E., Sandhu, R., 2005. Database security-concepts,
approaches, and challenges. IEEE Trans. Depend. Secur. Comput.,
2(1):2-19. [doi:10.1109/TDSC.2005.9]
[13] Bertino, E., Samarati, P., Jajodia, S., 1997. An extended
authorization model for relational database. IEEE Trans. Knowl. Data
Eng., 9(1):85-101. [doi:10.1109/69.567051]
[14] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y., 2002. Hippocratic
Databases. Proc. Very Large Data Bases, p.563- 574.
[15] The virtual private database in oracle9ir2: An oracle technical
white paper.
http://otn.oracle.com/deploy/security/oracle9ir2/pdf/vpd9ir2twp.pdf.
[16] J.D. Ullman. Principles of Database Systems. Galgotia
Publications, 2nd edition, 2001.
[17] Alex Roichman, Ehud Gudes. Fine-grained Access Control to Web
Databases. SACMAT’07, June 20–22, 2007.

Neha Sehta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3183 - 3186

3186

